Title (Systemy czasu rzeczywistego)	Code 1010331131010330781
Field Control Engineering and Robotics	Year / Semester 2 / 3
Specialty	Course
- Hours	CORE Number of credits
Lectures: 2 Classes: - Laboratory: - Projects / seminars: -	6
	Language
	polish

Lecturer:

dr inż. Jarosław Warczyński Instytut Automatyki i Inżynierii Informatycznej e-mail: jarslaw.warczynski@put.poznan.pl

Faculty:

Faculty of Electrical Engineering ul. Piotrowo 3A 60-965 Poznań tel. (061) 665-2539, fax. (061) 665-2548 e-mail: office_deef@put.poznan.pl

Status of the course in the study program:

Obligatory course, Faculty of Electrical Engineering, field Control Engineering and Ro-botics.

Assumptions and objectives of the course:

Acquaintance of the basic knowledge about real-time applications and supporting them real-time operating systems

Contents of the course (course description):

The matter of real-time applications and programs for critical applications. Require-ments for real-time operating systems. The architecture of the real-time operating systems. The systems kernel and its functions. Creation of processes and methods of their scheduling. Real-Time Scheduling Algorithms: RMS, EDF, LLF, MLLF, MUF, MMUF. Interprocess communications. Message-passing system. Process Synchronization. Principles of constructing client-server applications. Basic system management func-tions. Contraction of real-time applications. Examples of real-time operating systems: QNX, ECOS, and WXWorks systems.

Introductory courses and the required pre-knowledge:

Basics of computer science, and programming

Courses form and teaching methods:

Lectures supported by transparencies, slides, and films. Laboratory exercises.

Form and terms of complete the course - requirements and assessment methods: Written tests and laboratory assessment.

Basic Bibliography:

Additional Bibliography: